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Abstract

Animal studies are an important component of drug product development and the regulatory review process since
modern practices have been in place, for almost a century. A variety of experimental systems are available to
generate aerosols for delivery to animals in both liquid and solid forms. The extrapolation of deposited dose in the
lungs from laboratory animals to humans is challenging because of genetic, anatomical, physiological, pharma-
cological, and other biological differences between species. Inhaled drug delivery extrapolation requires scrutiny
as the aerodynamic behavior, and its role in lung deposition is influenced not only by the properties of the drug
aerosol but also by the anatomy and pulmonary function of the species in which it is being evaluated. Sources of
variability between species include the formulation, delivery system, and species-specific biological factors. It is
important to acknowledge the underlying variables that contribute to estimates of dose scaling between species.
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Introduction

The use of animals as surrogates for humans to
address safety of exposure to inhaled xenobiotics is well

established.1–5 As animal models of disease emerged, their
use for assessing safety of therapeutic agents was an extension
of their application to prediction of behavior in humans.6,7

Presently, the ability to create disease models through genetic
intervention or by selecting a relevant host for a pathogen has
further promoted the use of animals in drug discovery and
development.8–11 These models often have a strong mecha-
nistic underpinning at the level of molecular and cellular
biology.

Early experiments to demonstrate the efficacy, disposition,
and safety of inhaled drugs are usually conducted in small
animals. Frequently, these are disease models intended as
initial screens. As product development proceeds, formal,

regulated studies are usually conducted in both rodent and
non-rodent species. The intention of these studies is to
extrapolate to safe and efficacious doses in humans.3,5,12,13

However, to extrapolate from animals to humans, the
species differences must be thoroughly understood to
establish relevant deposited dose estimates. Species differ-
ences present challenges in direct extrapolation to humans,
which has long been acknowledged.14 It is important to
recognize formulation and delivery differences that can also
contribute to variations that may need consideration to
facilitate the estimation of dose deposited in the lungs.
Figure 1 illustrates the interface between the inhaled drug
product, the drug delivery technology, and the lung biology
that is ultimately responsible for drug efficacy.15 The tech-
nical and biological factors that exist between the drug
formulation and its local biopharmaceutical interactions and
ultimately bioavailability are species dependent. Species
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dependence results from a range of anatomical and physi-
ological differences, including lung anatomy, clearance
mechanisms, and receptor biology. These particular species
differences will be described in detail below.

Figure 2 illustrates the elements of the technological ap-
proach that depend on the intended species in which the
drug will be evaluated. The delivery device in combination
with the drug formulation (i.e., drug, excipient, and pro-
cessing) constitutes the drug product (or drug delivery sys-
tem).16 The drug product/delivery system needs to
accommodate the requirements to deliver to the evaluating
species, dispersing the aerosol under the influence of an
airflow with a specific resistance to achieve the desired
aerodynamic performance.17 Ideally, the aerodynamic per-
formance is equivalent or smaller to that when tested with
human devices/delivery systems to support nonclinical
testing in a clinically relevant manner. The drug delivery
technology that requires consideration relates to differences
in animal anatomy and physiology (i.e., pulmonary func-
tion). Strategies have been developed to address these is-
sues, whether in early proof-of-concept efficacy and
pharmacokinetic assessment or in formal nonclinical safety
testing. Clearly, there are many sources of interspecies
variation to be addressed in the experimental design and in
subsequent data interpretation.

The intent of this review is to consider primary sources of
variability, including formulation, device/delivery technol-
ogy, lung anatomy, physiology (i.e., pulmonary function),
lung deposition, clearance, and receptor/target location.

Formulation and Device/Delivery Technology

The drug formulation composition can readily be trans-
lated from one species to another and is central to the ability
to establish tolerability. However, the physicochemical

properties of the formulation, which are usually fixed to
meet the needs of humans, impact the ability to effectively
deliver drug to animals.4,13,17 The device/delivery technol-
ogy used for humans (e.g., inhaler) is rarely directly appli-
cable to animals and requires either an alternative or
modification to meet the needs of exposure.3,13,17 There are
clear biological differences between species self-evident at
the level of size, but beyond that, the structure and function
of the lungs differs to an extent that influences deposition.
Consequently, extrapolation of dose from animals to hu-
mans is not simply a question of allometric scaling; it re-
quires consideration of the purpose of the studies and the
relevance of any animal model to the human situation.

Formulation options

The major formulation options are either liquids,
molecular dispersions in aqueous or nonaqueous fluids, or
solids, either as particles alone or suspended in liquids.18

It is not within the scope of this article to thoroughly
describe all possible formulations that might be delivered
as aerosols to the lungs. However, it is important to
acknowledge that the state in which the drug is presented
defines the device requirements both for human and ani-
mal delivery.

Briefly, drugs in aqueous media include solutions, lipids
(e.g., liposomes), and nanosuspensions.19–23 The most pro-
minent nonaqueous medium in which drug may be dispersed
is volatile propellant used in metered dose inhalers.24 The
drug may be present in the nonaqueous medium as a solu-
tion or suspension. Dry powder formulations are used as
prepared for the product for human use.25 Both aqueous and
nonaqueous drug preparations and dry particles are matched
with inhaler and nebulizer devices to disperse their drug
contents directly into air for delivery.

FIG. 1. Species considerations are required for both technical and biological factors
influencing the dose to contrast human inhaler delivery of drug with that of animal
exposure.
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Pulmonary delivery system

It is convenient when considering relevant methods of
inhaled drug delivery to discriminate between liquid and
solid aerosols. Liquid aerosols can be delivered by nebu-
lizer, soft mist inhaler, or metered-dose inhaler.21,24,25 Par-
ticulate aerosols are delivered by dry powder inhaler or
metered-dose inhaler.24–26 While these devices are valuable
parts of the therapeutic regimen for a variety of human
diseases, many of the devices are not easily translated for
delivery to animals. The ability for humans to coordinate
inhalation of airborne drug particles from a device with
inspiratory flow through the oropharynx is difficult to mimic
in most species. Consequently, the focus of aerosol delivery
to animals is to achieve: (1) a defined dose and; (2) a rep-
resentative particle size distribution that can be translated to
humans. This focus addresses important and complex early
development and preclinical testing requirements and the
regulatory burden of relevance of the animal data to a
human.

Target product performance

The key critical performance characteristics associated
with inhalers have been defined by regulatory guidance and
compendial standards with respect to dose and aerodynamic
particle size characteristics.27,28 The nominal dose, retained
in the metering system, is depleted through each step of
delivery. Initially, the emitted dose reflects that proportion

of the nominal dose that exits the mouthpiece of the inhaler.
The delivered dose is that entering the mouth. The respira-
tory or lung dose is that passing the oropharynx and entering
the lungs. Note that lung deposition is throughout the entire
lung below the larynx encompassing both tracheobronchial
and pulmonary (alveolar deposition). Figure 3 illustrates the
way in which the dose diminishes at each step by losses that
occur in transit.29,30

The aerodynamic particle size distribution (APSD) is
known to influence the proportion of the aerosol that can
enter the lungs, since losses in the upper respiratory tract
(mouth and oropharynx) are influenced by particle size.31

For human lung deposition, 5 lm is considered as the cutoff
above which most of the aerosol does not enter the lungs and
below which most of the aerosol passes to the lungs.31

The methods most frequently employed to measure these
properties are sampling tubes and filters for dose determi-
nation and inertial impactors, notably the Andersen Cascade
Impactor and the Next Generation Impactor, to determine
the APSD.27

Species Differences

At the fundamental level, it is important to recognize the
similarity of mammals. In the era of genomics, this might
best be addressed through sequence homology of the gen-
omes. However, the data are not all available and the
methods and completeness of the characterizations differ.

FIG. 2. Technical considerations that differ between inhalers for human use compared
with exposure dosing systems for animals. In vitro performance refers to standard aerosol
performance testing (e.g., delivered dose, APSD). APSD, aerodynamic particle size
distribution.
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Consequently, simply examining the evolutionary tree indi-
cates the points at which divergence occurred, which pre-
sumably has underlying genetic origins. Figure 4 shows the
phylogenic tree for several laboratory animals.32,33 This
would seem to indicate an expectation of genetic similarity in
the following sequence: human, nonhuman primate (rhesus
monkey), dog, rabbit, guinea pig, rodent (mouse/rat).

Anatomy

The structure of the lungs is an important consideration for
aerosol delivery. The physical pathway and the fluid
dynamics governed by breathing frequency and tidal volume
(product = minute volume) influences the deposition of air-
borne particulates. The structure of the human lungs differs
significantly from that of many frequently utilized species for
aerosol-related research. The lungs of humans and guinea
pigs have a bifurcating branching structure that is almost
regularly dichotomous at all scales of scrutiny. Nonhuman
primates (e.g., Rhesus monkeys) and rabbits exhibit irregu-
larly dichotomous lung structure.34 Rodent lungs are mono-

podial in that they exhibit a root and branch structure.35,36

Combining multiple lung structures, dog airways are irregu-
larly dichotomous in the upper airways but monopodial in the
lower airways.34 Features of bifurcating and monopodial lung
structures are illustrated in Figure 5. The human lung cast,
Figure 5A shows the bifurcating system, while the monopo-
dial system of the dog is shown in Figure 5B.

The overlaid schematic structures, at the right corner of
each panel in Figure 5, illustrate the details of these lung
anatomies.37 It is evident that the fluid dynamics underlying
the transport of aerosols on the inspiratory flow of these
organisms will differ.

Beyond the anatomical features that will influence parti-
cle behavior in the lungs, there are species differences in the
diameter of a particles that can enter the lungs following
naso- or oropharyngeal inhalation.38 Rodents, rabbits, and
guinea pigs are obligate nose breathers, and therefore, nasal
deposition automatically precedes lung deposition.39,40 Hu-
mans are capable of inhaling through their mouth or nose at
will, which allows differentiation of nasal from inhaled
aerosol sampling and in turn nasal and inhaled products.

Nose/throat cutoff diameters

Once the critical performance characteristics of an in-
haled drug product have been defined, an aerosol can be
delivered to any species of animal for evaluation. At this
point, the interaction of the aerosol is with the unique
anatomy and physiology of the species employed. Figure 6
illustrates the way that particle size influences pulmonary
deposition.41 For illustration of the species differences, the
diameter at which pulmonary penetration of aerosol occurs
is not surprisingly at higher particle sizes for larger animals,
human: 5.0 lm; dog/monkey: 3.0 lm; rat/mouse: 2.5 lm;
and guinea pig: 1.8 lm.42 Consequently, the proportion of

FIG. 3. Dose segmentation resulting from delivery efficiency and retention in the metering system/device
and airways of humans.

FIG. 4. Phylogenetic tree for laboratory animals utilized
in inhaled therapeutic research. Genetic similarities based
on data in the NCBI genomic database. NCBI, National
Center for Biotechnology Information.
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any aerosol that can enter the lungs varies from one species
to another. The deposition curves in Figure 6 have been
utilized to establish deposition fractions relative to humans.
Moreover, regional deposition within the lungs differs from
small animals to humans.31,43

Physiology (pulmonary function)

The unique anatomy of each species is accompanied by
pulmonary function that impacts directly on the deposition of

inhaled aerosols. The lungs expand and contract under the
influence of intercostal and diaphragmatic muscles. The two
parameters that direct the dose depositing in the lungs are the
breathing frequency and tidal volume, that multiplied to-
gether, give the minute volume. Table 1 shows these
parameters for various species of laboratory animals.35,41,44–53

Not surprisingly, the minute volume is proportional to the size
of the animal such that human > dog > guinea pig > rat >
mouse. Of note, differences within a given species can be due
to the breed, age, and size.48 Further differences are demon-
strated based on the measuring technique used (e.g., oscillo-
scopic respirograph, tracheal valve method) and subject
conditions.48 For example, Pleil et al. report that the respi-
ratory minute volume of humans is 6 L/min at rest, 16 L/min
during normal activity, and 40 L/min during moderate activ-
ity,45 giving rise to a wide range of minute volume values
dependent on the conditions during measurement. Conse-
quently, the use of a single value is an approximation that is
not intended to capture all sources of biological or physical
variability.

Allometric scaling

The characteristics of the aerosol delivered and the
anatomy and physiology of the species dictate the aerody-
namic properties (or behavior) of the particles/droplets as
they traverse the airways. Once the aerosol has deposited,
the local concentration will drive pharmaco- and tox-
icokinetic and pharmaco- and toxicodynamic effects. The
means of extrapolating to humans across species not only
depends on the differences in anticipated deposition but also
the allometric scaling across a variety of different

FIG. 5. (A) In situ cast of the tracheobronchial tree of a healthy 60-year-old man.
(B) In situ cast of a healthy 10-kg laboratory beagle. The silicone rubber casts were
prepared at the Inhalation Toxicology Research Institute (now Lovelace Respiratory Re-
search Institute) in Albuquerque. Overlaid figure shows the branching structure of
(A) bifurcating and (B) monopodial lungs. Figure reproduced with permission. Copyright
2008, Mary Ann Liebert, Inc.35

FIG. 6. Pulmonary deposition of particles inhaled by rats
and mice (solid), guinea pigs (dot), dogs and monkeys (dash),
and humans with nasal breathing (dot dash) or mouth
breathing (dot dot dash). The pulmonary deposition repre-
sents the fraction of the total amount inhaled. Data based on
that are presented by Snipes.42
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dimensions, characteristic of the lungs.14,54 These include
surface area, volume, and weight. Figure 7 shows the rela-
tionship between these metrics and body weight.54 There is
clearly a relationship across species that can readily be
accommodated in considerations that depend on these
parameters. This relationship may be different for pharma-
cologic aerosols that need primarily central deposition in the
lung (bronchodilators) versus aerosols that need peripheral
deposition (anti-inflammatories/steroids).

Methods of Pulmonary Delivery

Intratracheal administration

Delivery of solutions or suspensions directly to the lungs
by spray liquid instillation is an improvement on a method of
administration of drugs particularly to rodents that has been
employed for decades.55 A tube is inserted into the trachea of
an anesthetized animal and liquid is delivered from a glass
syringe.56 This method is a significant improvement on the

Table 1. Range of Reported Average Breathing Frequency, Tidal Volume, and Respiratory Minute

Volume for Humans and Relevant Laboratory Animals

Species Breathing frequency (breaths/min) Tidal volume (mL) Respiratory minute volume (L/min) Reference

Mouse 109–163 0.15–0.18 0.02–0.04 38,44,46–48

Rat 85–200 0.87–1.5 0.07–0.26 38,44,46–48,53

Guinea Pig 42–90 1.7–3.7 0.13–0.46 38,44,46–49

Rabbit 39–85 16–24 0.62–1.6 38,46–48,52

Monkey 30–40 20–42 0.70–1.6 38,44,46–48,50,51

Dog 17–21 144–320 3.1–5.2 38,44,46,47,53

Human 12–16 400–616 6–20 38,44,45,47,48

FIG. 7. Physiological parameters of (A) body surface area, (B) lung mass, and (C) lung surface area
plotted log-linearly with body mass illustrating allometric scaling. Power function curve fits for each
parameter in lower right-hand corner of each graph. Data from Snipes,38 Chappell and Mordenti,107 and
Gehr et al.108 Figure reproduced with permission. Copyright 2017, Elsevier.54
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original liquid instillation method in that it achieves a more
uniform regional distribution in the lungs of animals. A var-
iation on this method was also developed in which dry
particles maintained in a reservoir between the syringe and
the administration tube were dispersed on an airflow from
the syringe through the tube as airborne particles.57 The most
common examples of these systems were available com-
mercially from Penn-Century (Fig. 8A), which has since
discontinued their manufacture.58 Similar to the Penn-
Century device, Aptar has developed a commercially avail-
able Powder Administration Device for Animals system to
support preclinical research in mice.59 Furthermore, others
have attempted to address the need for systems to deliver
drugs directly to the lungs of small animals.60–65

Passive inhalation

Standard methods in inhalation toxicology for the deliv-
ery of drugs or xenobiotics involve whole body or more
commonly nose-only exposure chambers (Fig. 8B).66–69

Historically the quantity of drug required to conduct studies
using these systems prohibited their use in early proof-of-
concept studies. Wright’s dust feed, rotating brush, jet mills,
jet nebulizers, and fluidized bed powder generators were
employed to disperse the aerosols.6,63,70–73

Custom-made systems were developed to allow for
smaller quantities of drug aerosols to be employed, thereby
increasing the feasibility of conducting early studies when
very little drug was available.74,75 It is also possible to
measure a wide range of biometric parameters while con-
ducting exposure studies, including pulmonary and cardiac
function, thus maximizing the data collected from any
experiment.76 For example, the commercial system dis-
played in Figure 8B allows for plethysmography measure-
ments during drug delivery. As a result, individual animals
can be switched to fresh air when the desired drug dose is
reached, supporting accurate and reproducible dosing.

Large animals require direct dosing, where the needs of
which are served by connecting the aerosol generation
system through tubing and a mask.3,44,77,78 or less frequently
to a head dome.79 The animal is usually habituated to the
presence of the mask before administration of the aerosol to
minimize stress and support efficient and reproducible
administration of the aerosol.

Delivery challenge

Delivery of liquids is usually achieved by a nebulizer, and
the challenge is to assure the quality (dose and APSD) of the
aerosol while minimizing the airflow required to deliver it to
balance the dose delivered and the time required for deliv-
ery.21,80 Generally, nebulizers produce airborne droplets
effectively and reproducibly in relatively small volumes of
air. The presence of suspended particles can influence the
droplet size of the aerosol delivered.81,82 Dry particles are
historically administered by Wright dust feed, fluidized bed,
or rotating brush high output delivery systems.6,70,71 These
dry powder systems require large quantities of drug to match
the air required to disperse the particles into their primary
sizes in concentrations sufficient to effectively and repro-
ducibly support delivery to the animal and to provide suf-
ficient airflow for adequate ventilation for the animals.

The challenges and opportunities of intratracheal (IT)
administration of droplets or particles differ from those of
passive inhalation from an aerosol of dispersed liquid or
solid particulates. IT administration delivers the drug for-
mulation directly to the lungs. The entire dose, with the
exception of that retained in the device, which is usually very
little, is deposited. However, spray instillation systems do not
generate droplets <5 lm, and for powders, which may be in
respirable size ranges, it is not clear that the plume can fully
develop given the dimensions of the airways. Nevertheless, a
known dose is delivered that has some capacity to penetrate
into the lungs. Passive inhalation systems deliver aerosols in
sizes that are biologically relevant to deposition in the spe-
cies being employed. The efficiency of delivery is dependent
on their anatomy and physiology. Again, it is worth noting
that small animals are obligate nose breathers and, as such,
deposition in the nasal cavity will occur in addition to lung
deposition. A dose can be estimated based on knowledge of
the biology as will be described below. However, the indi-
vidual dose can only be estimated accurately following
delivery by studying the pharmacokinetics of disposition.83

Inhaled Dose Considerations

Delivery and deposition

After considering all variables described above, a gener-
ally accepted expression for estimating the deposited dose

FIG. 8. (A) Penn-Century� Dry Powder Insufflator� for direct IT delivery. (B) DSI� Buxco In-
halation Exposure System, a nose-only passive inhalation system. Dry Powder Insufflator and Buxco
Inhalation Exposure System reproduced with permission of Penn-Century and DSI, respectively. IT,
intratracheal.
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into the lungs to any species is defined in terms of the
aerosol concentration of exposure, the minute volume of the
animal, the anticipated deposited dose, and the body weight
(allometric scaling coefficient of 1) as the scaling factor.44

This differs from the delivered dose only by the accounting
for the deposition fraction.84,85

Deposited Dose (mg=kg=d)¼ (C (mg=L) · RMV (L=min)

· D (min) · DF)=BWT (kg)

Where C is the aerosol concentration (mg/L), RMV is the
respiratory minute volume (L/min), D is the duration of
exposure (minutes), DF is the deposition fraction, and BWT
is the body weight (kg).

The RMV is typically calculated as84:

RMV (L=min)¼ 0:608 · BWT (kg)0:852

Table 2 provides generalized values for terms in the
equation, allowing dose estimation to be made. As described
above (Table 1), the respiratory minute volume varies based
on the species, breed, age, size, measurement technique, and
measurement conditions. In Table 2, generalized respiratory
minute volumes are provided for dose estimation. The
rationale for the importance of these terms should be evident
from the previous sections describing biological factors
contributing to dose delivery and lung deposition.

Some outstanding publications have appeared that con-
sider dosing of animals and extrapolation to hu-
mans.30,35,86,87 Phillips has published an excellent general
complement to the exposition above54 and Wolff has con-
sidered the implications for dosing biologicals.88

Models of lung deposition based on experimental data
have been cited elsewhere in the article.31,80 Currently, ef-
forts are being made to model lung deposition from first
principles using computational simulations.89–91 The use of
these models may complement efforts to address human dose
predictions from human cell and tissue systems currently
under development as an alternative to animal studies.92–94

Clearance

The foregoing sections attempted to address consider-
ations required to allow adequate prediction of the human
inhaled dose from animal experiments whether for purposes
of safety or efficacy assessment. However, considerations of
dose cannot be complete without mentioning clearance. The
local dose whether for safety or efficacy in the lungs or for

availability for absorption to the systemic circulation is
modulated by the combined effects of clearance mecha-
nisms that remove particles or drug at rates that may differ
between species.95 The importance of kinetics in setting the
dose cannot be understated.96 Simulation of drug in the lung
can be misleading without consideration of all aspects of its
retention and clearance.97

Following lung deposition, which is influenced by all of
the factors identified above, the residence time of the drug in
the lungs is dependent upon the clearance mechanisms.
Figure 9 illustrates the presentation of drug to each of the
mechanisms of clearance that may also depend on the spe-
cies to which the aerosol has been administered.98

Figure 10 shows the clearance of inert materials from the
lungs of various species of animals.80,87,98 The point on the
y-axis at which each curve begins represents the quantity
remaining following mucociliary transport. The curves
themselves reflect the long-term clearance attributable to
cell-mediated transport from the periphery. The importance
of the differences shown in these plots relates to the likely
exposure of the epithelium once the dose is deposited be-
cause extrapolation of dose is based on the concept that the
pharmaco- or toxicodynamic effect is seen at a certain dose.
It should be acknowledged that the local dose is modulated
by species-dependent clearance mechanisms, in which case
the approach to interpretation should be the best (safety
longer residence time, efficacy shorter residence time) or
worst-case (safety shorter residence time, efficacy longer
residence time) scenarios.

Receptor/target biology

When considering animals as models for human disease,
it is important to consider whether the target receptor or
pathogen exists in the animal model as it does in human.
The following examples are given to illustrate the cellular
and molecular level differences that require attention. In
some cases, the animal does not have the receptor that is
present in human, as is the case for mice with ACE-2, the
important binding site for SARS-CoV-2.11 Consequently,
genetic manipulation may be required to express the target
moiety.11 However, the question of the natural density of
such receptors in the model versus humans must be con-
sidered.99

It was shown decades ago that paracellular clearance rates
of a range of molecular weight dextrans across the pulmo-
nary epithelium was linear, more rapid for small molecular
weight than macromolecules across a number of mammalian
species.100 However, transcellular transport may occur for

Table 2. Standard Values for Inhalation Toxicology Calculations. Table Reproduced with Permission

Species Mouse Rat Guinea pig Monkey Dog Human

Body weight (kg)a 0.03 0.25 0.7 2.4 10 60
RMV (L/min)b 0.03 0.19 0.45 1.3 4.3 20
Lung weight (g)a 0.2 1.5 4 22 110 1000
Deposition factorc 0.1 0.1 0.2 0.25 0.25 1

Copyright 2016, Sage Publications.44

aActual values for lung and body weights can be used if available.
bRMV estimated using the formulation from Alexander et al.84

cFor determination of lung-deposited dose, estimates were based on data from Wolff and Dorato.87

RMV, respiratory minute volume.
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less-soluble molecules or those with a propensity to interact
with cells.101

Such interactions may depend on the expression of mu-
cus, metabolizing enzymes and transporters in the lungs of
different species, and the importance this may have in the
disposition of drug.102,103 Local binding or lysosomal stor-
age as compartments that may influence uptake of drug may

also vary between species, influencing the pharmacokinetics
of systemic appearance of drugs and requiring interpretation
to be used in predicting behavior in humans.104–106

Conclusion

Given the significant differences in anatomy, physiology,
and lung function between species, it is not surprising that
there is no single aerosol delivery system that can readily be
adapted across species.

Biological considerations with respect to similarities and
differences between species that influence deposition are
accompanied by differences in airway epithelial surface
area, volume, and lung mass. Clearance rates also differ
from one species to another, whether by absorption or mu-
cociliary or cell-mediated transport. Dose prediction from
animals to humans is often simplified to proportionality
based on specific features of lung biology.

However, it is important to consider aspects of the for-
mulation, method of delivery, and fundamentals of anatomy
and physiology. The importance of these considerations is in
interpreting deviations from simple allometric scaling. This
is especially true when the target is located in specific cells
or regions in the lungs where expression may differ between
species.
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