

Cutaneous Radiation Injuries Created with Different Radiation Sources WM Weber

06 May 2019

Sunburns – The Simple Example

Third degree - Necrosis

Dermal Damage Severity

First-degree burn

Second-degree burn

Third-degree burn

Recognizing burns

First-degree symptoms

- skin color is pink to red
- slight swelling
- skin is dry
- burn can be anywhere from tender to severely painful

Third-degree burn

The full thickness of the skin, including tissues under the skin are damaged.

Second-degree symptoms skin is part/e-white ta

skin looks raw and is

mottled red in color

blisters contain clear fluid

· severe to extreme pain

· skin is moist

- skin is pearly-white, tan-coloured or charred
- skin is dry and leathery
- blood vessels and bones may be visible under the skin
- little or no pain, as nerve endings are destroyed

Photons

Dermal Interaction

 So what does that mean when it comes to sunburns? **UVB-Screening Sunscreen**

UVA rays still penetrate skin

Broad-Spectrum Sunscreen

Blocks both UVA and UVB rays

- Ozone blocks some UV
- Wear broad-spectrum sunscreen •

Radiation Protection

- So to reduce radiation injury to the dermis, we should simply apply sunscreen and limit our time around the radiation source?
 - Yes for sunburns
 - Ozone and sunscreen block the relevant wavelengths for radiation induced injury
 - Not true for all types of radiation
 - Photons
 - Particles

What about for Co-60 or Cs-137?

- They are also photons (gamma-emitters), so sunscreen should work, right?
 - Wrong, the have different energies
- Combinations of beta and gamma

Photons

Photon Penetration into Tissue

- Lovelace radiation generating instruments with high and low energies
 - Grenz 20 kV (~10⁻⁷ m)
 - RT250 250 kV (~10⁻⁸ m)
 - LINAC 6 MV (~10⁻⁹ m)
- Low energy
 - long wavelengths
 - low penetration
- High energy
 - Short wavelengths
 - high penetration

Lovelace Swine Radiation Burns

• Grenz – Irradiated with up to 150 Gy

Followed out to 60 days

Lovelace Swine Radiation Burns

• RT250 - Irradiated with up to 150 Gy

y – Day 12 (Grenz)

Lovelace Swine Radiation Burns

• RT250 - Irradiated with up to 150 Gy

Depth Dose

- In both cases animals received a relatively soft x-ray
 - Most of the dose was to the surface
- LINAC resulted in animals euthanized within 9 days
 - Dermal wounds had not formed

Nominal energy	Depth of maximum dose (cm)	Skin dose (%)	
240 kV(p)	Surface	100	
Cobalt-60	0.500	50	
6 MeV	1.500	35	
10 MeV	2.500	25	
18 MeV	3.000	15	

Photon Summary

- High energy photons readily penetrate the dermis with only partial deposition in the upper layers of the skin
- Low energy photons <u>do not</u> readily penetrate the dermis with maximal deposition in the upper layers of the skin
- High levels of photons are needed to create a significant radiation wound
 - Low energy are "better" because they do not penetrate deeply causing "other types" of radiation injury
- Lovelace studies utilized pure photon exposures

Particle Radiation

- Photons are different wavelengths of energy
- Particles have a physical mass
 - Alpha particles
 - Helium nuclei
 - Beta particles
 - Electrons

Alpha Wounds

- Not likely to result in moderate to deep wounds (full thickness)
 - Particles do not penetrate past the very top layer of the skin
 - Protects the under lying tissues from injury
 - Low every, low travel lengths
- Very dangerous if internal
 - Ingestion, open wound, inhalation

Beta Wounds

- Will result in wounds
 - Particles deposit their energy in the first several layers resulting in compared to photons
- But...
 - Spectrum of energy
 - Damage at deeper depths
 - Results in complex wounds

Beta Wounds

Because particles are present, lower doses
than photons are needed

	2–6 Gy	transient erythema 2–24 h
Water .	3–5 Gy	dry desquamation in 3–6 weeks
	3–4 Gy	temporary epilation in 3 weeks
	10–15 Gy	erythema 18–20 days
150 Cyr Day 12 (Cropz)	15–20 Gy	moist desquamation
TSO Gy – Day TZ (Grenz)	25 Gy	ulceration with slow healing
	30–50 Gy	blistering, necrosis in 3 weeks
	100 Gy	blistering, necrosis in 1–3 weeks

Linear Energy Transfer (LET)

- Amount of energy a particle transfers to material (skin) per unit distance
 - Comes down to the energy of decay
- High LET low penetration
 - All energy deposited in a short distance
- Low LET high penetration
- Not directly transferable to gamma rays
- LET explains why injury in not always proportional to dose

Particle Summary

- Alpha particles are monoenergetic
 - low in energy with a high LET
- Beta particles are polyenergetic
 - Continuous energy spectrum
 - Some high LET, some low LET

Summary

- Know your source
 - Pure gamma rays will require a large dose to create a dermal wound
 - High energy will penetrate and result in secondary radiation effects
 - Low energy will result in mostly superficial dermal wounds
 - Alpha particles are less likely to result in dermal wound
 - Beta particles are the biggest concern
 - Penetration at all dermal levels depending on the energy
 - Lower doses can result in dermal injuries similar to high gamma doses
 - Isotopes with multiple routes of decay (beta and gamma) will result in wounds from both types of radiation
 - Beta will be more pronounced due to dermal interactions

Summary (cont.)

- Understand your model
 - What are you trying to accomplish?
 - Full thickness needs a higher energy OR a higher total dose
 - Partial thickness needs a lower energy OR a lower total dose
 - Combined injury radiation + other types of injury

Thank You

www.lovelacebiomedical.org